Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant_ A review paper

نویسندگان

  • E. Mohseni
  • E. Zalnezhad
  • A. R. Bushroa
چکیده

Hydroxyapatite (HA) has been used in clinical bone graft procedures for the past 25 years. Although a biocompatible material, its poor adhesion strength to substrate makes it unsuitable for major loadbearing devices. Investigations on various deposition techniques of HA coating on Ti–6Al–4V implants have been made over the years, in particular to improve its adhesion strength to the metal alloy and its long-term reliability. This review comprehensively analyzes nine techniques mostly used for deposition of HA onto Ti–6Al–4V alloys. The techniques reviewed are Plasma sprayed deposition, Hot Isostatic Pressing, Thermal Spray, Dip coating, Pulsed Laser deposition (PLD), Electrophoretic deposition (EPD), Sol–Gel, Ion Beam Assisted deposition (IBAD), and Sputtering. The advantages and disadvantages of each method over other techniques are discussed. The adhesion strength and the factors affecting the adhesion of HA coating on Ti–6Al–4V implants are also compared. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method.

Hydroxyapatite (HAp) is commonly used to coat titanium alloys (Ti-6Al-4V) for orthopedic implants. However, their poor adhesion strength and insufficient long-term stability limit their application. Novel sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study is to use the novel sphene ceramics as coatings for Ti-6Al-4V. The sol-gel method w...

متن کامل

Interface Characterization of Plasma Sprayed Hydroxyapatite Coat on Ti 6Al 4V

Hydroxyapatite (HA), a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6Al-4V alloy by using the air plasma spraying technique. The coat was characterizted with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including HA mainly and traces of tric...

متن کامل

Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa inste...

متن کامل

TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings.

A cogent understanding of the microstructure, and indeed nano-structure, of hydroxyapatite (HA) and the interface between Ti-6Al-4V and HA is crucial to its appropriateness as a biomaterials. This paper reports the analysis of plasma-sprayed HA/Ti-6Al-4V composites by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) to elucidate the intricate nature of...

متن کامل

Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013